ADDIS ABABA UNIVERSITY DEPARTMENT OF MATHEMATICS Applied Mathematics I (Math 1041) Worksheet 1 2021/22 AY

- 1. For a given vectors A and B
 - a) Find a real number β such that the vectors A = (β , -3, 1) and B = (β , β , 2) are perpendicular.
 - b) Find two vectors each of norm 1 that are perpendicular to the vector A = (3, 2).
 - c) If U and V are perpendicular unit vectors, show that $||U V|| = \sqrt{2}$
 - d) Vectors A and B make an angle of $\beta = \pi/6$. If $||A|| = \sqrt{3}$, and ||B|| = 1. Then calculate the angle between the vectors A+B and B-A.
- 2. For a given vectors A and B
 - a) Find the cosine of the angle between the vectors A = (4, 1, 6) and B = (-3, 0, 2).
 - b) Find the projection of vector U = (-7, 1, 3) onto vector V = (5, 0, 1).
 - c) Given three vectors A, B and C such that A+B+C = 0; if ||A|| = 3, ||B|| = 1 and ||C|| = 4, then evaluate A.B+B.C+A.C.
 - e) Show that $(\frac{1}{2}, \frac{1}{3}, 0), (1, 1, -1)$ and (-2, -3, 5) are collinear points, and find symmetric equation of the line containing them.
 - f) Let A be a vector in the first octant such that ||A|| = 3 and the direction cosines with respect to x-axis and y-

axis are
$$\frac{1}{3}$$
 and $\frac{2}{3}$ respectively. Then find vector A.

- 3. Show that the points $(-1,1,1), (0,2,1), (0,0,\frac{3}{2})$ and (13,-1,5) lie on the same plane and find the equation of the plane containing them.
- 4. Find the equation of the line passing through the point (-2,5,-3) and perpendicular to the plane $\pi : 2x 3y + 4z + 7 = 0.$
- 5. Find the equation of the plane:
 - a) that is parallel to the z-axis and contains the points (3,-1,5) and (7,9,4).
 - b) that contains the point (-2,1,4) a line L: x = 2 3t, y = 4 + 2t, z = 3 5t.
 - c) that contains the point (4,0,-2) and perpendicular to each of the planes x y + z = 0 and 2x + y 4z = 5.
- 6. Let $\pi_1: 2x 4y + 4z = 7$ and $\pi_2: 6x + 2y 3z = 2$ be two planes
 - a) Find parametric equations of the line of intersection of the planes π_1 and π_2 .
 - b) Find the cosine of the acute angle of the intersecting planes π_1 and π_2 .
- 7. Find the point of intersection of the line L: x = 2 3t, y = 4 + 2t, z = 3 5t, $t \in \mathbb{R}$ and the plane 2x + 3y + 4z = -8.
- 8. Let $L_1: x = 1 + 2t$, y = 2 t, z = 4 2t and $L_2: \frac{x 9}{1} = \frac{y 5}{3} = \frac{z + 4}{-1}$ be two lines.
 - a) Show that L_1 and L_2 are intersecting lines.
 - b) Find the cosines of the acute angle between L_1 and L_2 at their intersection point.
 - c) Find symmetric equations for the line that is perpendicular to L_1 and L_2 and passes through their intersection point.
- 9. Let L be the line $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z+5}{7}$ and π be the plane 2x + 2y z + 4 = 0. Find the two points on L at a distance 3 unit from π .

10. Let L_1 : $\frac{x+2}{5} = \frac{y-1}{-2} = z + 4$ and L_2 : $\frac{x-3}{-5} = \frac{y+4}{2} = \frac{z-3}{-1}$ be two lines. Then

- a) Show that L_1 and L_2 are parallel and find the distance D between L_1 and L_2 .
- b) Find the equation of the plane that contains L_1 and L_2 .

11. Find the distance between the parallel planes: z = x + 2y + 1 and 3x + 6y - 3z = 4.

12. Let L_1 : x = 3-t, y = 4+4t, z = 1+2t and L_2 : x = s, y = 3, z = 2s be two lines

a) Show that L_1 and L_2 are skew (neither intersecting nor parallel) lines.

- b) Find two planes π_1 and π_2 such that π_1 is parallel to π_2 , π_1 contains L_1 and π_2 contains L_2 .
- c) Find the distance D of the two parallel planes π_1 and π_2 (the planes you found in (b)). (Note that this distance D is the distance between the two skew lines L_1 and L_2)
- 13. Let V= {(a, b) $|a,b\mathcal{E}\Re$ }.Define addition in V and scalar multiplication by elements of \mathbb{R} as follows: (a, b) + (c, d)

= (a + c, b + d) and k (a, b) = (ka, 0). Show that V is not a vector space over \mathbb{R} with respect to the operations defined. Which axiom(s) fail to hold?

14. Determine whether W is a subspace of V or not.

a)
$$W = \{(x, y) \in IR^2 : x - 3y = 0\}, V = IR^2$$

b) $W = \{(x, y) \in IR^2 : y = x^2\}, V = IR^2$
c) $W = \{(a, b, c) \in IR^3 : a - 3b + 4c = 0\}, V = IR^3$
d) $W = \{(x, y, z) \in IR^3 : z = 2y\}, V = IR^3$
e) $W = \{(a, b, c) \in IR^3 : b \text{ is an integer}\}, V = IR^3$
f) $W = \{(a, b, c) : a \le b \le c\}, V = IR^3$

15. Determine whether the following vectors are linearly independent or not.

- a) (1,2), (3,2) in IR^2 b) (-3,6), (1,-2) in IR^2 c) (-1,2), (1,-2), (3,4) in IR^2 d) (1,1,3), (0,2,1) in IR^3 e) (2,1,-2), (3,2,2), (5,3,0) in IR^3 f) (1,0,2), (0,-1,1), (1,3,0) in IR^3
- 16. Let $P_n = P_n(IR)$ be the vector space of all polynomials of degree less than n, $\forall n \in IN$. Determine whether the following vectors are linearly independent or not.
 - a) 1, x + 2, 2x 1 in P_2 b) x - 3, 1 - 2x in P_2 c) $x^2 + 1, x^2 - x, x + 1$ in P_3 d) $3 - 2x, x^2 + 2x - 1, x^2 + 2$ in P_3 e) $1, 2x - 3, x^2 + 3x - 5, 2x^2 + 2$ in P_3
- 17. Let V be the set of all continuous functions on IR \setminus
 - a) Show that V is a vector space under the usual addition and scalar multiplication of functions.
 - b) Show that the set $W = \{f \in V : f \text{ is differentiable function }\}$ is a subspace of V.
 - c) Show that $2^x, 2^{2x}, 2^{3x}$ are linearly independent vectors in V
 - d) Show that $\sin 2x$, $\cos 2x$, $\cos x \sin x$ are linearly dependent vectors in V.

18. If possible, write **u** as a linear combination of **v** and **w**.

a)
$$u = (1,-2), v = (3,1), w = (0,-1)$$

b) $u = (-3,2), v = (-1,3), w = (2,-6)$
c) $u = (0,-2,1), v = (1,-1,2), w = (0,2,4)$
d) $u = (8,-2,1), v = (0,1,5), w = (0,3,-1)$
e) $\mathbf{u} = 3x^2 + 8x - 5, \mathbf{v} = 2x^2 + 3x - 4, \mathbf{w} = x^2 - 2x - 3$